Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes
نویسندگان
چکیده
Multidimensional data distributions can have complex topologies and variable local dimensions. To approximate complex data, we propose a new type of low-dimensional “principal object”: a principal cubic complex. This complex is a generalization of linear and non-linear principal manifolds and includes them as a particular case. To construct such an object, we combine a method of topological grammars with the minimization of an elastic energy defined for its embedment into multidimensional data space. The whole complex is presented as a system of nodes and springs and as a product of one-dimensional continua (represented by graphs), and the grammars describe how these continua transform during the process of optimal complex construction. The simplest case of a topological grammar (“add a node”, “bisect an edge”) is equivalent to the construction of “principal trees”, an object useful in many practical applications. We demonstrate how it can be applied to the analysis of bacterial genomes and for visualization of cDNA microarray data using the “metro map” representation.
منابع مشابه
Data complexity measured by principal graphs
How to measure the complexity of a finite set of vectors embedded in a multidimensional space? This is a non-trivial question which can be approached in many different ways. Here we suggest a set of data complexity measures using universal approximators, principal cubic complexes. Principal cubic complexes generalise the notion of principal manifolds for datasets with nontrivial topologies. The...
متن کاملElastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization
Principal manifolds are defined as lines or surfaces passing through “the middle” of data distribution. Linear principal manifolds (Principal Components Analysis) are routinely used for dimension reduction, noise filtering and data visualization. Recently, methods for constructing non-linear principal manifolds were proposed, including our elastic maps approach which is based on a physical anal...
متن کاملGeometrical Complexity of Data Approximators
There are many methods developed to approximate a cloud of vectors embedded in high-dimensional space by simpler objects: starting from principal points and linear manifolds to self-organizing maps, neural gas, elastic maps, various types of principal curves and principal trees, and so on. For each type of approximators the measure of the approximator complexity was developed too. These measure...
متن کاملApplication of The Method of Elastic Maps In Analysis of Genetic Texts
Method of elastic maps allows to construct efficiently 1D, 2D and 3D non-linear approximations to the principal manifolds with different topology (piece of plane, sphere, torus etc.) and to project data onto it. We describe the idea of the method and demonstrate its applications in analysis of genetic sequences.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007